Class project

- Class project
- Project ideas
- Structural optimization
- Q&A

Class project

Goal: Create an IJulia notebook that explains and solves a problem using techniques we learned in class.

- Project proposal: Tuesday April 10
 - Choose a group (3 or 4 students)
 - Choose a topic and write a short description.
 - Not graded, can change it later.
- Final report due: Monday May 7
 - Each group turns in one IJulia notebook
- Prize!
 - Top 5 projects: featured on course website
 - Top 2 groups: free lunch!

Final report

- Introduction: Background information on the problem. Should include a brief history (with some citations) as well as current uses/applications. (accessible to anybody)
- Mathematical model: Derivation and explanation of how to create an optimization model that represents the problem.
 Explain approximations, etc. (accessible to any CS 524 student)
- **3. Solution:** Code that solves the problem in JuMP and displays the solution. Should be well explained and commented.
- **4. Discussion:** Discuss limitations, special cases, generalizations, variations on the theme that can be explored. This can include additional solutions.

Topics

- An example we saw in class. Of course, this would just be a starting point.
- Something you found online or in a book, e.g. Boyd's notes. Be sure to include relevant references. Again, think of this as a starting point.
- Your own idea (pending my approval). Can be something you come up with, or related to research you've done, etc.

Topics

- An example we saw in class. Of course, this would just be a starting point.
- Something you found online or in a book, e.g. Boyd's notes. Be sure to include relevant references. Again, think of this as a starting point.
- Your own idea (pending my approval). Can be something you come up with, or related to research you've done, etc.
- Posted on the class website to serve as examples:
 10 top projects from 2016 and 6 top projects from 2017.

 This class is about modeling, not data collection! There are no extra points for solving a particularly large optimization problem or for using "real data."

- This class is about modeling, not data collection! There
 are no extra points for solving a particularly large
 optimization problem or for using "real data."
- Sensible idea: solve a "toy problem" first, then work your way up to bigger and/or more realistic instances or your problem. Don't try to solve it all at once.

- This class is about modeling, not data collection! There
 are no extra points for solving a particularly large
 optimization problem or for using "real data."
- Sensible idea: solve a "toy problem" first, then work your way up to bigger and/or more realistic instances or your problem. Don't try to solve it all at once.
- Stay away from issues involving algorithm design, tuning, or selection. Focus on the model.

- This class is about modeling, not data collection! There
 are no extra points for solving a particularly large
 optimization problem or for using "real data."
- Sensible idea: solve a "toy problem" first, then work your way up to bigger and/or more realistic instances or your problem. Don't try to solve it all at once.
- Stay away from issues involving algorithm design, tuning, or selection. Focus on the model.
- Stay away from large-scale problems with many local minima (not much to do from a modeling standpoint).
 No physics/materials simulations and no deep learning!

Structural optimization

• Reference: Vandenberghe (EE236a, UCLA)

Exam

- Tonight
- 7:15pm-9:15pm, Ingraham Hall, B10 (here).
- Bring a pen/pencil and aid sheet (optional)
- Scratch paper will be provided